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INTRODUCTION 

Recall computing integrating factors to solve 

ordinary differential equations. I will yield an 
example of integrating factors as from any 

known textbook on differential equations. We 

are going to find a general solution of the 

ordinary differential equation .= 2 x
x

y

dx

dy
 

To find the general solution to this equation, 
locating the integrating factor is required. Let 

the integrating factor be  
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Multiplying the equation by our integrating 

factor will give us  
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After integrating both sides developing our 

general solution. 

In principle, integration factors are powerful 

tools for solving ordinary differential equations. 

In practice of this technique, they are only found 
in certain cases. Integrating factors can be found 

in important situations where u


 is a given 

function of only one variable [1]. Integrating 

factors are used to solve various problems 

including determining exact equations [2].  

BODY 

Let ),( txu


 and ),( txp  be an unknown velocity 

vector and pressure in the set of real numbers, 

R . These functions are defined for 
nx R  and 

time 0t . Let ),( txf  be an external force 
applied to a fluid element creating motion of the 

fluid. Let ),( txf  be equal to zero. I must show 

there exists smooth functions 

][0,),(),,( 3 Rtxutxp


 to satisfy 

conditions (1), (2), (3), (6) and (7) of the 

unsolved Navier-Stokes equation. Observe a 

two-dimensional partial differential equation 

example to be, .=)],([ 2

0 xtutxu
tx

u 






 

We can potentially solve one of these PDE’s 

using a newly defined technique. The new 
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concept implements same methodology for 

solving an ordinary differential equation, but 

with partial integration. Let ),(0 txu


 be an 

unknown velocity vector defined for position 
nx R  and time 0t .  

Let an initial velocity vector ),(0 txu


 be equal 

to tx2
 and treated as a partial integrating 

factor in the given partial differential equation,  
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tx
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


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with initial conditions 

0=(0)=)(=,0)( 2

00 xxuxu


. To create a 

general solution for this partial differential 

equation, let our partial integrating factor be 
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We then multiply our given PDE with the 

developed integrating factor to obtain  
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When we partially integrate both sides with 

respect to x  and t , we have the visual of  

.=]][[
23

6

1

2
23

6

1

2
23

6

1

txextuetx
tx

u
e

txtxtx










 

The left side of the equal sign becomes  
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Notice I have not integrated the right side yet for 
a reason. From here, another new concept is 

introduced. The new perception is called partial 

integration by parts. Partial integration by 
parts applies to and will take effect after the 

equal sign. The first step will be to partially 

integrate with respect to x . 

When we implement the partial integration with 

respect to x  first, t  is the constant to look like

txxet
tx
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Let u  equal x  where we take the partial 

derivative with respect to x  giving us 1=
x

u
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from the integral with exponentials,  
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with respect to x . Notice the algebraic 

manipulation to the variable x  where we 

partiallyintegrated the exponential, e . Let this 

new concept be called partial integration with 

exponentials. The formula for partial 

integration by parts in two-dimensions will 

yield,  .=
tx

u
vuv

tx

v
u









  

We will implement partial integration by parts 

once with respect to t  towards obtaining a 

general two-dimensional equation solution. The 

demonstration yields,  
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From here, lets use the existing partial 

integration with exponentials concept with 

respect to t  and create,  
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where a  consists of a constant and one or more 

variables. Since we are in partial integration, 
this will bring us to our solution. Then,  
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Joining together the completed partial 

integration of both sides obtains  
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Now, we can solve for our general solution from 

the given partial differential equation. Solving 

for u


 yields,  
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where the function exists 0>t  and 0x . 

Now, the divergence can be shown. Finding the 

partial derivative of u


 with respect to x  gives,  
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The divergence yields,  
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where 
nx R , 0x  and 0>t . The 

divergence equaling to zero explains the newly 

formed velocity vector field possessing an 

existing surface integral. It also says parts of the 

surface have positive and negative normal 
components.We can now establish a pressure 

function using the same new concepts. Let 

initial pressure ),(0 txp be equal to xt2  as 

another partial integrating factor in the given 
PDE,  
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Then, our integrating factor is  
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Next, multiplying our integrating factor into the 

equation gives,  
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Now, we partially integrate both sides to 

visually obtain,  
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We have come across another partial integration 
by parts problem on the right side of the equal 

sign. Let xu =  where 1=
x
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the partial integration with exponentials 
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Taking out the constant t  since we are 

implementing partial integration by parts 

suggests,  
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Using the partial integration with exponentials 

technique with respect to t  shows,  
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Now, finishing up with the partial integration by 

parts gives,  
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We bring back the left side of the equal sign, 

solving for our two-dimensional general 

solution p ,  
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where the function exists 0>t  and 0x . 

I created a third example using another space 

dimension, 
3Ry , for creating 

3),,( Rtyxu


 

as a general solution. Let the example yield an 

equation such as,  
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where tyxtyxu 22

0 2=),,(


 is our initial 

velocity vector as a partial integrating factor 

with initial conditions 
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. Then, 

we have  
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In this case, we must triple integrate both sides 

formulating,  
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The right side of the equal sign suggests partial 

integration by parts to be performed three times. 

The partial integration by parts case with respect 

to x  is  
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Then, we compute partial integration by parts a 
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The third and final time will show our general multi-dimensional solution with a third performance of 
partial integration by parts obtaining,  
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where the function exists 0>t  and 0,  yx . 

RESEARCH IMPLICATIONS 

The new concepts developed might be able to 

see application towards fluid mechanics and 

many other fields regarding engineering 

sciences. I would like to present a possibility on 

bounded energy of the velocity. If we want to 
establish an existing boundary of the velocity 

vector, a  
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presentation of theory must correlate. Fubini’s 

Theorem may have a correlation to bounded 
energy on velocity vectors. 

Theorem 1 (Fubini's Theorem for Wave 

Theory) If u(x,y,t) is continuous on a wave 

specifically in region )[1,3 R , then

dAtyxu ),,(
3 R

 

dxdydttyxu ),,(=   

dydxdttyxu ),,(=   

where the function ),,( tyxu


 exists 0>t  and 

0,  yx . 

I am deciphering another implication with the 

velocity vector. Let the greek letter kappa,  , 
be the curvature for some known velocity 

vectors ),( txu


 and ),,( tyxu


 where 0>t  

and 0,  yx  such that, .
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